
NASA Mars Technology Program

Rover State Monitoring
for Development and Operation

Requirements and Design Concept

NASA Mars Technology Program

Why Monitor Internal State?
Development

Recording component internal state is crucial to software
development and testing, particularly debugging
Internal state information is needed for analysis of timing
and function to improve performance

Operation
During operation state can be interpreted for health
assessment, fault recovery, and performance optimization
Telemetry of state information (engineering data) is
needed for situational awareness and operational planning

NASA Mars Technology Program

But Why?
Inevitable

CLARAty is formulating a new architecture and developing
a potentially large and open code base
Many developers and much code building must ultimately
produce lean, stable rover software
Developers will need tools and will either use services
provided by CLARAty or will use their own scheme of
printfs, messages, and log files
It could get very messy and/or computationally expensive
Overall it may be more effective to develop a uniform,
stable, efficient, extensible state monitoring scheme

NASA Mars Technology Program

Objective
Develop a CLARAty component to enable
internal state extraction, transmission and
monitoring for use during rover development
and operation

NASA Mars Technology Program

Using Internal State
State Extraction

Collecting internal state information from source
components (instrumenting components, logging state)

State Transmission
Transmitting state information to destination components

State Recording
Recording a time-referenced sequence of state including
events, faults, and description

State Monitoring
Run-time use of internal state for operation

NASA Mars Technology Program

Requirements
Standardized

State monitoring must be object oriented, make use of CLARAty base
classes and tools, and conform to architecture decomposition

Scalable
Large numbers of components each with internal state that must be
monitored during development and operation

Robust
Components will crash, hang,and adversely effect other components
directly but state monitoring should not have indirect affect

Timing
State monitoring must be able to time synchronize internal state
information for event traceablilty
Getting timing correct is key to useability

NASA Mars Technology Program

Requirements
Distributed

State monitoring will necessarily be distributed so the transmission scheme
must support broad distribution

Efficient
State monitoring must minimize impact on the performance of the
instrumented objects (for example it should not hog thread cycles)
State monitoring must minimize impact on total system performance (for
example it should not clog the bus with message traffic)

Flexible
State monitoring has many potential uses from producing customized log files
to dynamically adjusting component priorities to optimize efficiency so flexibility
is important

Portable
State monitoring must be OS/HW independent or easily portable
Use of abstractions, like ACE middleware, are desirable

NASA Mars Technology Program

Design Concept
Client-Server Architecture
State Server

Accepts connections from clients
Exchanges state information

State Sources (Source Clients)
Connect to server
Extract internal state
Transmit to server

State Destination (Destination Clients)
Connect to server
Register desired state
Receive state stream from server

NASA Mars Technology Program

State Server and Source Clients

State
Server

Source
Client Source

Client

Source
Client

Client
Acceptor

State
Handler

State
Handler

Source
Connection
Request

Spawn

Event

…

Acceptor Thread StateA Thread StateB Thread

State

NASA Mars Technology Program

State Server and Destination Clients

State
Server

Destination
Client Destination

Client

Destination
Client

Client
Acceptor

State
Handler

State
Handler

Destination
Connection
Request

State

Register

Event

…

Acceptor Thread StateA Thread StateB Thread

NASA Mars Technology Program

State Clients
Source Clients

Modules with monitored state
•Almost Every Module
•Sensor Interfaces, Controllers, Navigators, Planners
•Destination Clients

Destination Clients
Modules that utilize state information
•Telemetry Manager
•Health Monitor
•System Executive
•Performance Analyzer

NASA Mars Technology Program

State Extraction
Desired Properties

1. Minimal code modification
2. Minimal computational impact (use OS)
3. Non-blocking

NASA Mars Technology Program

State Extraction
Possible Approaches

Methods are specifically invoked to capture state
Monitored variables are registered and then sampled
Objects are instrumented and state is passively extracted

NASA Mars Technology Program

State Extraction - Invocation
State is extracted by invoking logging methods

Object data logged by invoking an extraction method
Developer must invoke methods for state transition (not
automatic for each state transition) or other events
Enables log-by-event

Implementation concepts:
Use included class to extract state data and transmit
Could also use to extract other information such as events,
signals, triggers, process status, data from other
components, even debugging messages
(Similar to rlog and rlogEvent approach)

NASA Mars Technology Program

State Extraction - Sampling
State is extracted by registering variables

Object data to be extracted is registered
Extraction occurs when method is invoked to sample all
the registered data
Enables log-by-time

Implementation concepts:
Use included class to register object internal state
variables. Might get messy with complex data hiding
(works great with C-style global variables)
Method for harvesting the data tied to event or timing loop
Similar to rlogRegisterVariable and rlogFlushChanges
approach

NASA Mars Technology Program

State Extraction - Instrumentation
State is “instrumented”

Specific object data is implemented so that its value can be
extracted at run-time.
Developer is responsible for instrumenting state by
designating the instrumentation class but extraction is
otherwise transparent

Implementation concepts:
Use templated class to overload the assignment operator
for instrumented state.
Assignment operator also extracts state.
Implementation possible for primitive types but may be
problematic for complex data types.

NASA Mars Technology Program

State Transmission
Desired Properties

1. Minimized computational cost to client (use OS)
2. Minimized bus traffic (multi-cast)
3. Secure communication
4. Minimize delays/delays do not effect clients
5. Temporal order maintained
6. Minimal queuing
7. Dynamic redirection
8. Non-blocking

NASA Mars Technology Program

State Transmission
Implementation Concepts

•Shared memory - very efficient but not
extensible/portable

•Virtual shared memory - management and portability
issues

•Sockets - tricky to establish and manage, need wrapper
•Mailboxes/messages - management and portability
issues

•Rlog - nice plug-in concept but client impact and state
transmission (via non-portable sockets or IPC) issues

•ACE - communication middleware, encapsulation for
distributed transmission

NASA Mars Technology Program

State Transmission
Communication using ACE middleware

Based on ACE thread-per-connection server model
ACE sockets encapsulate everything from addressing, to
connecting, to data (de)marshalling
Non-blocking connections
Scatter-write and gather-read for efficiency
Robust to client disconnect

Connection per state type
State server establishes state handler per state type
State source client extract and transmit
State destination clients register and receive

NASA Mars Technology Program

Time Recording
Recording state time and relating times from
various distributed components is essential

Each connection from a client to the State Server is
established with identification of host process and local
time information
Local time is available through ACE_getlocaltime a
portable method
State Server has a information to determine time offsets
between all client logged threads.
Time offsets can be used to produce time corrected state
and event sequences

NASA Mars Technology Program

State Logs
Created by the State Server

Individual component logs (each associated with
transmission thread)
Master log corrected for clock offsets of each state client

Created by State Destination Clients
Telemetry Manager can log filtered state
Destination off-board can record state to off-load storage
requirements

NASA Mars Technology Program

State Analysis
Desired Properties

1. Obtain state from multiple sources
2. Resequence state by time
3. Vary verbosity
4. Vary sample rates

NASA Mars Technology Program

Telemetry Manager Concept
On-board Telemetry Manager has broad
subscription for state from State Server

Comprehensive state information received from State
Server can be filtered and prioritized for downlink
Detailed engineering can be buffered for optional downlink
Fault data can be buffered for optional downlink
Processed state unicast to off-board Telemetry Manager

Off-board Telemetry Manager receives state and
multicasts to destination components

ACE multicast supports efficient, secure communication
Operator interfaces, analysis, planners, public outreach

NASA Mars Technology Program

Health Monitor Concept
On-board Heath Monitor analyzes state

Fault Detection (Simple Faults)
•Component triggered faults
•Component process condition
•Individual parameters out-of-bound
•Composite parameters out-of-bound

Fault Detection (Complex Faults)
•Diverse state and inference (high-centering fault)

Fault Forecasting
•Detecting trends that lead to faults
•Predicting the likelihood of a fault

NASA Mars Technology Program

Conclusions
State monitoring is needed for development and
operation
CLARAty components should be instrumented
to extract internal state
ACE middleware would support a multithreaded
State Server to collect, record, and distribute
state
CLARAty components such as Rover Executive,
Health Monitor, Telemetry Manager would utilize
the State Server

